Antagonism of buthionine sulfoximine cytotoxicity for human neuroblastoma cell lines by hypoxia is reversed by the bioreductive agent tirapazamine.
نویسندگان
چکیده
Relapse of neuroblastoma (NB) commonly occurs in hypoxic tissues. Buthionine sulfoximine (BSO), an inhibitor of glutathione (GSH) synthesis, is cytotoxic for NB cell lines in atmospheric oxygen (20% O(2)). Tirapazamine (TPZ) is a bioreductive agent that forms a toxic-free radical in hypoxia. We determined in four NB cell lines cytotoxicity using the DIMSCAN digital imaging fluorescence assay, glutathione (GSH) levels by the DTNB-GSSG reductase method, apoptosis, reactive oxygen species (ROS), and mitochondrial membrane potential (Delta psi(m)) by flow cytometry. Hypoxia (2% O(2)) antagonized BSO-mediated ROS, apoptosis, and cytotoxicity but not GSH depletion. TPZ synergistically enhanced BSO cytotoxicity in hypoxia for all four NB cell lines, achieving 2-4 logs of cell kill. BSO depleted GSH (8-42% of controls) in 20 and 2% O(2), whereas TPZ only decreased GSH in hypoxia. Maximal GSH depletion was induced by BSO + TPZ. N-acetylcysteine abrogated GSH depletion caused by TPZ but not by BSO. BSO increased ROS, decreased Delta psi(m), and caused apoptosis in 20% O(2) (but not in 2% O(2)). TPZ elevated ROS in 2% O(2) (but not in 20% O(2)), whereas BSO + TPZ increased ROS both in 20 and 2% O(2). In hypoxia, TPZ alone or TPZ + BSO caused an 80% decrease of Delta psi(m) at 24 h, preceding apoptosis in 74-86% of cells at 48 h. Thus, hypoxia significantly antagonizes BSO-mediated cytotoxicity for NB cell lines, but TPZ reversed the inhibition of BSO-mediated cytotoxicity in hypoxia, causing increased ROS, Delta psi(m) decrease, GSH depletion, apoptosis, and synergistic cytotoxicity. These data additionally define the role of ROS in BSO-mediated cytotoxicity and suggest that combining BSO with TPZ could have clinical activity against NB in hypoxic sites.
منابع مشابه
Critical role of GSH in Sulfur Mustard-induced Oxidative Stress and Cytotoxicity in Human Skin Fibroblast Cell Line
In this study the role of glutathione (GSH) in sulfur mustard -induced oxidative stress and cytotoxicity, in human skin fibroblast cell line (HF2FF) was evaluated. Sulfur mustard-induced superoxide radical and hydrogen peroxide formation were evaluated by determination of superoxide dismutase and catalase activity in cell lysate. The cytotoxicity of sulfur mustard was estimated by lactate dehyd...
متن کاملCritical role of GSH in Sulfur Mustard-induced Oxidative Stress and Cytotoxicity in Human Skin Fibroblast Cell Line
In this study the role of glutathione (GSH) in sulfur mustard -induced oxidative stress and cytotoxicity, in human skin fibroblast cell line (HF2FF) was evaluated. Sulfur mustard-induced superoxide radical and hydrogen peroxide formation were evaluated by determination of superoxide dismutase and catalase activity in cell lysate. The cytotoxicity of sulfur mustard was estimated by lactate dehyd...
متن کاملButhionine Sulfoximine Inhibits Cytopathic Effects and Apoptosis Induced by Infection with AIK-HDC Strain of Measles Virus
Measles virus (MV) is a highly contagious agent which causes a major health problem in developing countries. We studied the effect of buthionine sulfoximine (BSO) on the replication of an AIK-HDC strain of MV and its induced apoptosis in Vero cell lines. Methods: In this study, toxicity of BSO on Vero cells was investigated first, resulted in determination of sub-lethal or non-toxic concentrati...
متن کاملCytotoxic agents Synergistic cytotoxicity of buthionine sulfoximine (BSO) and intensive melphalan (L-PAM) for neuroblastoma cell lines established at relapse after myeloablative therapy
Patients with high-risk neuroblastoma (NB) initially respond to aggressive, alkylator-based therapy only to die from recurrent disease that is refractory to chemotherapy, including alkylating agents. We examined the ability of buthionine sulfoximine (BSO)-mediated glutathione (GSH) depletion to modulate melphalan (LPAM) resistance in five NB cell lines established after progressive disease foll...
متن کاملSynergism of buthionine sulfoximine and melphalan against neuroblastoma cell lines derived after disease progression.
BACKGROUND Despite intensive-alkylator based regimens, >50% of patients with high-risk neuroblastoma (NB) die from recurrent disease that is probably due, in part, to acquired alkylator resistance. PROCEDURE Using buthionine sulfoximine (BSO)-mediated, glutathione (GSH) depletion to modulate melphalan (L-PAM) resistance, we examined six NB cell lines established after progressive disease foll...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Cancer research
دوره 63 7 شماره
صفحات -
تاریخ انتشار 2003